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Abstract—Mental wellbeing is a major issue not only in 
Singapore but also the rest of the world. This paper aims to find 
methods of classifying mental health problems in online text, in 
hopes that these problems can be detected early and if serious 
enough intervened. The focus of this report is classifying different 
mental health problems accurately. To do so different approaches 
have been taken, these include more traditional approaches such 
as tf-idf vectorization followed by logistic regression and deep 
learning methods which involve LSTM layers or BERT.  
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I. INTRODUCTION 
 This paper is created as an output for the final project of 
CS5246 – Text Mining at National University of Singapore by 
students of Group 4. The project offered a unique opportunity 
for the team members to put the learnt algorithms into 
practice. It also motivated us to look beyond the course 
curriculum for other solutions to practical problems of mental 
wellbeing.  

 In recent years, mental wellbeing has become a major 
health-related topic in Singapore. Mental health problems 
come in all shapes and forms, with affected people seeking 
help often not early enough, if at all. However, people share 
their thoughts, fears, worries, etc. across social media and/or 
online forums. In this project we explore classification of such 
posts in social media into different mental health categories.  

 The first part of the report mentions our motivation for the 
project and datasets selected. We then describe the details of 
EDA and preprocessing. The next part provides information 
on the different traditional and deep learning models explored. 
The results of prediction on validation and test data are 
mentioned next. Finally, we present the analysis of the 
predictions using explanation methods and conclude the 
report. 

II. MOTIVATION 
Mental health is an increasingly important health related 

topic of discussion, with millions of people all over the world 
suffering from mental health issues such as depression and 
anxiety. Unfortunately, individuals who are suffering from 
mental health problems often do not seek help due to stigma, 
lack of awareness, stressful and busy lifestyle. 

In recent past years, social media has become a go to 
platform for people to share their thoughts, feelings, and 
experiences, including those related to mental health. This 
provides us with a unique opportunity to make use of social 
media data to predict and monitor mental health of individuals 
and improve access to mental health care. 

The goal of this project is to develop a classification model 
that can accurately predict whether the posts of an individual 

reflect an issue with mental wellbeing, and we also try to 
identify five broad classes of mental illnesses - depression, 
anxiety, bipolar disorder, ADHD (attention deficit 
hyperactivity disorder), PTSD (Post Traumatic Stress 
Disorder) and an additional ’None’ class (which does not 
pertain to any mental illness). 

There are many potential applications for a model like this, 
like it could be used for the early identification of people who 
are at the risk of depression, mental health campaigns, mental 
health research, personalized mental health support etc. 
Furthermore, we intend to explore the potential of this model 
to shortlist people who opt-in for self-mental health 
monitoring on social media platforms. We intend to alert them 
if their previous posts continuously reflect signs of depression. 

By leveraging social media data and the latest deep 
learning techniques, we believe that there is potential to 
improve the overall awareness regarding mental health and its 
treatment among individuals and the society. The 
development of a classification model that can accurately 
predict depression using social media data could be highly 
instrumental in achieving this goal. 

III. DATA  

A. Data Collection  
Obtaining high-quality data that is appropriately annotated 

for mental health issues proved to be a challenging task, as 
numerous pertinent datasets are not publicly available and are 
typically loaned exclusively for research purposes. However, 
after careful consideration and evaluation of various options, 
we ultimately chose to utilize two datasets in this project. The 
first dataset [1] consists of tweets related to mental health 
issues. The second dataset was sourced from [2] and is a 
combination of subreddits and blogs. 

B. Dataset  
[1] was dropped as the data was highly unbalanced.  
[2] dataset has a total of  six classes associated with a 

mental illness namely: 

1. ‘adhd’: Neurodevelopmental disorder characterized 
by inattention, hyperactivity, and impulsivity. 

2. ‘bipolar’: Mood disorder marked by episodes of 
mania (elevated mood) and depression. 

3. ‘depression’: Mental disorder characterized by 
persistent feelings of sadness, hopelessness, and loss 
of interest. 

4. ‘anxiety’: Mental disorder characterized by excessive 
worry, fear, and nervousness. 

5. ‘ptsd’: Mental disorder that can occur after 
experiencing or witnessing a traumatic event, causing 



persistent symptoms of anxiety, avoidance, and 
distress. 

6. ‘none’: No mental health issues. 

The whole dataset was already divided into training, 
validation and training splits. The training, validation and test 
datasets have 13727, 1488 and 1488 data points, respectively. 

IV. EXPLORATORY DATA ANALYSIS BEFORE 
PREPROCESSING 

We started off with the EDA by checking if the classes are 
well balanced in the dataset. Though the dataset is not 
perfectly distributed, class labels are arguably well balanced 
in training dataset and equally distributed in the validation and 
test dataset  

 
Fig. 1. Class Distribution Train 

Data 

 
Fig. 2. Class Distribution Val 
Data 

 

A. Character Count/ Text Length  
Text length or number of characters range from 150 to 

38261, with an average length of approximately 1133 and a 
standard deviation of approximately 1381. The majority of 
text lengths fall between 426 and 1306 approximately. 

Table 
Head 

Train Text Length Summary 
Table column subhead Subhead 

1 count 13727.000000 

2 mean 1133.409485 
3 std 1381.169545 
4 min 150 
5 25% 427 
6 50% 723 
7 75% 1306 
8 max 38261  

Fig. 3. Text Length Summary 

B. Word Count 
Word counts range from 29 to 6973, with an average 

count of approximately 209 (Refer box plot for visual 
representation). Most text word counts fall between 80 and 
245. 

Table 1 
Train Data Word Count Summary 

Table column subhead Subhead 

1 count 13727.000000 

2 mean 209.842937 

3 std 250.509970 

Table 1 
Train Data Word Count Summary 

Table column subhead Subhead 

4 min 29.000000 

5 25% 80.000000 

6 50% 135.000000 

7 75% 245.000000 
8 max 6973.000000 

Fig. 4. Word Count Summary 

C. Visualising N Grams for different Mental Health 
Problems 

We visualise the top 5 one, bi and tri grams for each 
class label excluding the stop words (This is not part of pre-
processing.) Adhd, Anxiety, Depression, Bipolar & Ptsd 

-

 
Fig. 5. ADHD N-Grams 

 
Fig. 6. Anxiety  N-Grams 

 
Fig. 7. Depression N-Grams 

 



 
Fig. 8. Bipolar N-Grams 

 
Fig. 9. PTSD N-Grams 

V. DATA PREPROCESSING 
Below enumerated steps were followed during pre-

processing. 
1. As social media text may contain a lot of emojis, we 

first converted emojis and emoticons to their text 
meaning. We used emoji and emot libraries 
respectively for this purpose.  

2. Contractions like I’ve were converted to “I have” 
(Library used: text hammer) 

3. Emails were removed (Library used: text hammer) 

4. Html tags were removed (Library used: text hammer) 

5. Special Characters were removed. (Library used: text 
hammer) 

6. Accented characters were removed (Library used: text 
hammer). 

7. Some most common words with multiple occurrences 
of a letter, example "coooool" turns into --> cool was 
replaced. (Regex) 

8. Some common acronyms, typos and abbreviations 
were corrected (Regex). 

9. Some common words with multiple occurrences of a 
letter, which were not handled previously are taken 
care of using regex. 

10. Punctuation marks other than exclamation and 
Question mark were removed. These were retained to 
check the strong sentiment expressed by exclamation 
mark and doubt or uncertainty expressed by question 
mark. 

11. Ellipses were removed. 

12. Stop words were removed. Note: Negation words and 
pronouns were retained. Pronouns were retained as 
some of the researches have indicated that depressed 
people often use more pronouns like I, me , myself. 

13. Lemmatisation was performed using spacy. 

VI. EXPLORATORY DATA ANALYSIS AFTER 
PREPROCESSING 

A. Most Frequent Words 
10 most frequent words for each mental issue were 

identified and plotted, our preprocessing was further refined 
to avoid typos for such words. 

 
Fig. 10. Depression 10 most frequent words 

 
Fig. 11. Bipolar 10 most frequent words 

 
Fig. 12. ADHD 10 most frequent words 



 
Fig. 13. PTSD 10 most frequent words 

B. Word Count (Tokens) 
Tokens word counts range from 149 to 3963, with an 

average count of approximately 125(Refer box plot for visual 
representation). The majority of text word counts fall 
between 48 and 146. Given that majority of the words lie in 
this range we have chosen the word embedding size for one 
of our models to be 200 

C. Average Word Count For Each Class Label 
When we calculated the average word count for each 

class label and plotted it we noticed that the idea that a person 
exhibiting more mental issues tend to write longer posts was 
not reflected in this dataset, so we will not be considering this 
as an important feature in the currentscope. 
 

 
Fig. 14. Average Word Count by Label 

VII. METHODOLOGY 
This section describes the methodology used in the 

project to train and test the models. Both traditional as well 
as deep learning models were used. 

A. Traditional  Models 
We used the following base models during this project: 

• K-Nearest Neighbor (KNN) 
• Naive Bayes 
• Decision Tree 
• Random Forest 
• Logistic Regression 

KNN helps capture local patterns by considering k-nearest 
data points. Naive Bayes was used for the assumption that the 
features are conditionally independent given the class label. 
Decision Trees and ensemble Random Forest was used to 

check for non-linear relationships and handle high-
dimensional noisy data. Logistic Regression was used to get. 
interpretable coefficients that represent the effect of each term 
on the prediction. 

All the above models were trained using the default 
parameters and performance was measured. The performance 
of these models was measured by calculating Accuracy, 
Precision, Recall and F1-score of predictions on validation 
and test data. Since these are the standard metrics for Machine 
Learning models, we will not elaborate on this selection. 

We then selected the best performing model for further 
hyperparameter tuning. The detailed results of the models are 
covered in subsequent sections. Amongst the traditional 
models, Logistic Regression had the highest accuracy, 
precision, recall and f1 score. GridSearchCV was used to find 
the best parameters for Logistic regression model. Three 
options for parameter, ‘C’ was fed to GridSearchCV. A 
smaller value of 0.1 was added to see the results from stronger 
regularization. A large value of 10 was added with the hope 
that larger coefficient values can better fit the training data. A 
medium value of 1.0 was also checked to rule out the 
possibilities of underfitting and overfitting from the two 
extreme values respectively.  

The Tfidf vectorizer was used before feeding the training 
data to the base models. The vocabulary built had 41,185 
features. For the further tuning of best model, we limited the 
vectorizer to produce a maximum of 20,000 features. This was 
done to reduce dimensionality and prevent risks of overfitting.  
We experimented with the following 4 Vectorizers to find the 
best option: 

• Count Vectorizer 
• Tfidf Vectorizer 
• Count Vectorizer with ngram range (1,2) 
• Tfidf Vectorizer with ngram range (1,2) 

        Count Vectorizer was selected to determine how well the 
model performs in terms of capturing term frequency or count 
of individual tokens. Tfidf was selected to seek important 
terms based on both frequency and rarity within the reviews. 
The n-grams were explored to capture local contextual 
information in the text. 
 Finally, we used the Feature Importance Explanation 
method to analyze the results. The absolute values of 
coefficients produced by the Logistic regression model was 
used as feature importance. We selected this approach because 
it helped us determine the top 20 features representing each 
class. A larger magnitude of the coefficient indicates a 
stronger influence of the feature or term on model’s 
prediction. We were able to interpret both the correct and 
incorrect predictions using this knowledge. 

B. Deep Learning Models 
1) Recurrent Neural Networks 

        We also used Recurrent Neural Network (RNN) based 
text classifiers such as LSTM (Long-Short Term Memory) 
and Bidirectional LSTM (BiLSTM) on our dataset to 
compare the results with those obtained using traditional 
Machine Learning models. We know that LSTM is a variety 
of RNN that can learn long-term dependencies, especially in 
sequence-based prediction problems. LSTM neural networks 
can solve numerous tasks that are not solvable by vanilla 
RNNs. Long-term temporal dependencies can be captured 
effectively by LSTM, without suffering much optimization 
hurdles. 



        The BiLSTM is an upgrade on top of the basic LSTM. In 
BiLSTM, the information is obtained by processing the 
sequence in both forward and backward directions within two 
hidden layers. Both the sequences are connected to the same 
output layer. BiLSTM has complete information about every 
point in each sequence, everything before and after it, thus, 
placing them above LSTMs with respect to performance in 
text classification tasks. 
        We use LSTM and BiLSTM models with the below 
structures for this project. The number of neurons in the output 
layer is 6 because there are a total of 6 class labels. 
 

• LSTM: The model is structured in the order: 
Embedding layer [Vocabulary size x 300 (word 
embedding length)], dropout, LSTM layer [300 x 64], 
Linear layer [64 x 6]. 

• BiLSTM: The model is structured in the order: 
Embedding layer [Vocabulary size x 300 (word 
embedding length)], Bidirectional LSTM layer [300 x 
64], Linear layer [256 x 64], Linear layer [64 x 6].     
ReLU is used as the activation function and dropout 
is used. 

        Pretrained word embeddings from Global Vectors of 
length 300 have been used to convert the texts to their 
corresponding feature vectors for the LSTM-based models. 
All unique words from the training dataset are collected to 
make up the master vocabulary. For unknown or Out-of-
vocabulary (OOV) words, a vector of length 300 comprising 
of random numbers between -0.25 and 0.25 is generated and 
used as the embedding. An encoding is generated for each 
text record with the indexes of the constituent words from the 
master vocabulary. The encoding length is chosen to be 400 
based on the mean, maximum and 90th quartile of the number 
of words (tokens) in each record of the preprocessed dataset. 

2) BERT Model 
        Based on a lot of anecdotal evidence as well, 
recommendations from blog articles as well as the final 
lecture discussing the topic, transformer-based models, most 
notably- BERT trained models which were superior to 
embedded LSTM models as well as Tfidf models in 
classifying data accurately. This is due to BERT’s model 
having a self-attention mechanism which leads it to having 
no locality bias and provides equal opportunity towards all 
contexts - from long distance to short distance context. Thus, 
we decided to use BERT to see if higher accuracies could be 
achieved. 

a) Pre-processing (BERT) 
Pre-processing steps for training BERT were mostly the same 
as the others with a few key differences. These include: 

1. Removal of stop-words 
2. Removal of punctuation 
3. Tokenization 
4. Balancing the dataset (for the depression severity 

dataset) 
        Intuitively, as the benefit of BERT over more traditional 
approaches is that it learns to compute text representations in 
context, removal of stop words and punctuation will not 
improve and in some cases negatively affect the model. For 
example, consider the following sentence before and after 
removal of stop words and punctuation: 
 

Input: “I was depressed. But now I feel fine!” 
Result: “depressed. feel fine!” 
        If only considering the output it is ambiguous for a 
human, let alone a machine to tell the state of depression let 
alone the severity. As a result, stop-words were not removed. 
The same goes for punctuation: a question mark can certainly 
change the overall meaning of a sentence. Therefore, 
removing stop words and punctuation would just imply 
removing context which BERT could have used to get better 
results. We must consider that the benefit of BERT is that it 
learns to compute text representations in context.  
        Tokenization is unnecessary in the pre-processing step 
as BERT does that anyways during the encoding step when it 
makes the input ids and the attention masks. Encoding was 
slightly different to the LSTM model. To train the model, text 
must be encoded into attention masks and input ids. Attention 
masks are padding or truncation to direct models to the same 
number of tokens, so they have the same input shape. Input 
ids are a mapping between tokens and their respective ids. 
        Balancing the dataset for training the model is self-
explanatory. The depression severity dataset had over 90% 
cases as non-depressed and we were worried if trained on 
this, the accuracy metric may not have reliably informed us 
on how well the model performed. 

b) Training 
        To train the model the encoded data was passed into the 
model and depending on the results needed the output layer 
was adjusted accordingly. 
        We will split the reporting into two parts based on the 2 
different datasets. 

1. Mental Illness Multi-Classification Dataset. 
2. Extras: Depression Severity Dataset 

VIII. PREDICTIONS AND PERFORMANCE 

A. Traditional  Models 
 

 
Fig. 15. Accuracy and Precision on Validation data 

The trained models on default parameters were used to run 
predictions on both validation and test data. The results from 
the validation data are shown above in Figure 15. It is seen 
that the Logistic Regression model had the best performance 
amongst the traditional models with an accuracy of 0.81 
followed by Random Forest at 0.8. This is because both these 
models can capture complex interactions between words. 
They are also robust to handling incomplete sentences and 
outliers in text data. 
        On the other hand, KNN had the lowest score of 0.5 
because it can easily suffer from curse of dimensionality. 



Since the number of words in the default training was higher 
than 40,000; the feature space was high dimensional. KNN 
relies on the distances between data points and as the count 
of dimensions increase, the distances tend to converge. This 
reduces the discriminatory power of KNN and leads to a 
lower accuracy.  
        The results for Recall and F1-Score are shown in the 
image below. The results for all the four metrics are very 
close to each other for each model. This is because the dataset 
is balanced between each class as seen during the EDA. The 
results of the validation data and test data are also almost 
same with similar scores for each model. It shows the 
consistency of the models’ performance. So, we are not 
mentioning it separately. 

 
Fig. 16. Recall and F1-Score on Validation data 

It is expected that the results could have improved for KNN 
by choosing an appropriate value for hyperparameter K. 
However, since Logistic Regression had the best scores, we 
decided to select it for further optimization. The table below 
shows the best value of parameter, ‘C’ that was obtained for 
the different vectorizer methods. 
 
We observe that the best value for both types of Count 
Vectorizer is obtained as 0.1. This is because the features 
extracted from the text just based on frequency of their 
occurrence are less informative. So, a stronger regularization 
is required to find the best classification accuracy. In the case, 
Tfidf, a larger value of C indicates that the model performed 
better with weaker regularization as the features extracted 
from Tfidf are more informative and have higher predictive 
power as compared to Count Vectorizer.  
 

Hyperparameter ‘C’ and Different Vectorizers 
Vectorizer C 

Count Vectorizer 0.1 

Tfidf Vectorizer 1.0 
Count Vectorizer with ngram range 
(1,2) 

0.1 

Tfidf Vectorizer with ngram range 
(1,2) 

10 

Fig. 17. Best values for Logistic Regression ‘C’ using different vectorizers 

We observe that the best value for both types of Count 
Vectorizer is obtained as 0.1. This is because the features 
extracted from the text just based on frequency of their 

occurrence are less informative. So, a stronger regularization 
is required to find the best classification accuracy. In the case, 
Tfidf, a larger value of C indicates that the model performed 
better with weaker regularization as the features extracted 
from Tfidf are more informative and have higher predictive 
power as compared to Count Vectorizer 

  We also observe the difference in value of ‘C’ obtained 
when using the ngram range with Tfidf vectorizer. The 
inclusion of bigrams increased the feature space, which 
meant the model required even a weaker regularization or a 
high value of ‘C’ as 10 to avoid underfitting and a better 
capture of contextual information. 

The figure below compares the performance of each of the 
vectorizer techniques with the best values of ‘C’ obtained for 
them. In order to highlight the difference, the scale has been 
reduced to show the bars between scores of 0.8 and 0.85 only. 

 
Fig. 18. Performance of Tuned Logistic regression after different 

vectorization 

We observe that although the performance of all the 4 
types is very close to each other, the Tfidf Vectorizer with 
ngram range has the best accuracy of 83.3%. This is because 
it can capture more contextual information using the bigrams. 
It resulted in having features that had more predictive power 
and could capture multi-word expressions. 
 

B. Deep Learning Models 
1) Recurrent Neural Networks 

        As mentioned before, the dataset was already split into 
training, validation and test from the start. Both the LSTM 
and BiLSTM models were trained on the training dataset and 
validated against the validation dataset. The BiLSTM model 
was found to be converging faster than the LSTM model. We 
trained the LSTM model for 40 epochs and the BiLSTM 
model for 20 epochs. Learning rates of 0.005 and 0.0001 with 
an Adam optimizer were used for the LSTM and the BiLSTM 
models, respectively. We chose to use the Adam optimizer as 
it is adaptive in comparison to other optimization algorithms 
like Stochastic Gradient Descent (SGD) and is known to yield 
faster and better results. The Cross-Entropy Loss and 
accuracy/f1-score metrics were recorded for both the training 
and validation splits at the end of every epoch. The pretrained 
weights used for the models and the state dictionary of the 
trained model were saved to disk for testing the performance 
of the model on the test dataset. 



        In order to analyze the effect of dropout rates on these 
models, we use dropout values of 0.2, 0.3 and 0.5 to train, 
validate and test the LSTM and BiLSTM models. A 
consolidated view of the results obtained can be seen in Table 
I. For every scenario, we use the model state dictionary for 
the epoch after which the validation loss becomes greater 
than the training loss and starts to increase. Based on this 
approach, we use the state dictionaries of epoch 7, 19 and 29 
as the final trained models for LSTM with dropout values of 
0.2, 0.3 and 0.5, respectively. Similarly, we use the state 
dictionaries of epoch 8, 9 and 12 as the final trained models 
for BiLSTM with dropout values of 0.2, 0.3 and 0.5, 
respectively. 
 

Table 3 Validation and Test results for LSTM-based models 

Model (dropout) 
Validation Data Test Data 

Accuracy f1-score Accuracy f1-score 

LSTM (0.2) 0.733 0.737 0.710 0.716 

LSTM (0.3) 0.790 0.795 0.775 0.778 

LSTM (0.5) 0.790 0.794 0.755 0.758 

BiLSTM (0.2) 0.819 0.820 0.798 0.800 

BiLSTM (0.3) 0.816 0.817 0.807 0.807 

BiLSTM (0.5) 0.823 0.823 0.811 0.810 

Fig. 19. Validation and Test results for LSTM-based models 

        The LSTM model demonstrates the best performance 
with a dropout value of 0.3. It achieves a validation accuracy 
and f1-score of 0.790 and 0.795, respectively and a test 
accuracy and f1-score of 0.775 and 0.778, respectively. On 
the other hand, the BiLSTM model gives the best 
performance with a dropout value of 0.5. We get a validation 
accuracy and f1-score of 0.823 and 0.823, respectively and a 
test accuracy and f1-score of 0.811 and 0.810, respectively. 
Between the two models, the BiLSTM consistently 
demonstrates better performance, as is expected based on 
previous research on the subject. 

2) BERT Model 
a) Mental Illness Multi-Classification Results: 
To compare accuracies to the other 2 approaches,  

Tfidf logistical regression as well as LSTM approaches 
models, our BERT model was fitted to this dataset as well. 
We truncated the text to a maximum of 1500 length which 
was a more than 5 standard deviations away from the mean 
text length accounting for more than 99% of the data, which 
we thought was sufficient. Encoding and training this data 
took a little under 2 hours after purchasing collab pros 
compute units. These are the results: 
 

Validation and Test results for BERT-based models 

Model (dropout) 
Validation Data Test Data 

Accuracy f1-score Accuracy f1-score 
Bert-base-
uncased 
 (0.15) 

0.847 0.848 0.843 0.844 

 
        As we can see BERT performs extremely well with an 
accuracy of 84-85% and we see the f1-scores at 0.84-0.85 
which is highest among all other prediction methods. 

IX. EXPLANATIONS AND ANALYSIS 
This section covers the analysis and discussion on how the 

predictions of the model can be explained. 

A. Traditional Models 
Feature Importance was used to test the interpretability 

of the tuned Logistic Regression model. The top ten features 
obtained for each class is mentioned in the figure below.  

 
Fig. 20. Performance of Tuned Logistic regression after different 

vectorization 

        It is observed that the term mentioning the name of the 
class has the highest importance which is expected. For 
example, the term, ‘adhd’ has the importance of 29.73 which 
is the highest for the class, ‘adhd’. The category, ‘none’ 
contains generic terms that are not used in the context of a 
mental wellness. Two documents from each class were 
selected randomly to further analyze the prediction. We 
present analysis of two such results here, one where the 
prediction matched the actual class and another where the 
prediction was different. We will refer them as Test A and 
Test B. 
 
        The text from user’s post for Test A was the following: 
“does anyone here not take medication? i was diagnosed a 
few months ago. i really don't know if the story is important. 
we are dead broke and all i can do is work as much as i can 
to try and stay fed and sheltered. because of recent years 
incomes from my wife's business wwe don't qualify for 
assistance. i am now not struggling with any mania or 
paralyzing depression, probably mostly due to hard physical 
work that i recently started doing. lithium made me feel panic 
attacks like my limbs were turning to stone and a little 
creature was trying to burrow out the front of my skull. my 
wife verifies i am much calmer, am not paranoid or 
delusional-seeming, and that medication seemed to harm 
more than help. i know it is simple-minded to assume that one 
experience with a medication means i won't ever benefit. if 
the nukes don't get us and i continue to climb out of the dark 
trench toward better times, i don't know whether there is a 
need to seek medication. i would love to know if there are 
others who for whatever reason aren't taking anything 
(pharmaceuticals, weed, etc.) and are happier for it.” 
 
        The actual class as mentioned in the dataset is ‘bipolar’ 
and the prediction of the model is also ‘bipolar’. The 
prediction probability of the different classes for this test are 
shown in the table <Add number>. We observe that the post 



has the term ‘depression’ that has high feature importance for 
‘depression’ class. However, it also has the term ‘mania’ 
which has high feature importance for the ‘bipolar’ class. 
 

Table 
4 

PREDICTION PROBABILITY 
Class Test A Test B 

1. 
adhd 0.07150 0.00048 

2. anxiety 0.01766 0.00008 

3. bipolar 0.87412 0.00072 

4. depression 0.00520 0.00036 

5. ptsd 0.03016 0.99830 

6. none 0.00133 0.00005 
 

Fig. 21. Probability assigned by Logistic regression for each class 

The text from user’s post selected as Test B is shown below: 
“do you guys get nightmares? i had the worst one of my life 
tonight. i was psychotic and had a flashback to my attempt. 
multiple times. my hand was talking to me and telling me bad 
things. i have 3-4 nightmares a week and they aren't getting 
better. i don't know why this is happening.” 
 
        The actual class mentioned in the dataset is ‘bipolar’ but 
the predict class is ‘ptsd’. The prediction probability of the 
different classes for this test are shown in the table above. We 
observe a big difference in the prediction probability for the 
actual and predicted class where ‘ptsd’ received a probability 
of 99% as compared to ‘bipolar’ that has 0.07%. This is 
because the document contains words like, ‘flashback’ and 
‘nightmare’ that have high importance for the class ‘ptsd’ as 
seen in the ‘Top 10 Features by category’ table. 

B. Deep Learning Models 
1) Recurrent Neural Networks 

        The plots depicting the variation of training and 
validation loss/f1-score versus epochs for the various dropout 
values were captured for both the LSTM and the BiLSTM 
models. The plots for the LSTM model with a dropout of 0.3 
and the BiLSTM model with a dropout of 0.5 can be seen in 
Figure 22, (a) - (d). 
        The LSTM and BiLSTM models, in their pursuit of 
trying too hard to learn different features from the training 
data, can sometimes learn the statistical noise in the training 
dataset. This can definitely improve the model performance 
on the training dataset, but the trained model would then fail 
massively on unseen data (e.g. test dataset). This would 
indicate that the model is overfitting on the training data. 
Hence, we use dropout, which is the practice of randomly 
dropping out the nodes in the input and hidden layers of a 
neural network. All the forward and backwards connections 
with a dropped node are temporarily removed, thus creating a 
new network architecture out of the parent network. The nodes 
are dropped by the dropout probability which we specify when 
creating the model. This helps the models to prevent the 
overfitting problem. 
 

 

 
Fig. 22. (a) Training & Validation Loss vs Epoch for LSTM with a dropout 
of 0.3 (b) Training & Validation f1-score vs Epoch for LSTM with a dropout 
of 0.3 (c) Training & Validation Loss vs Epoch for BiLSTM with a dropout 
of 0.5 (d) Training & Validation f1-score vs Epoch for BiLSTM with a 
dropout of 0.5 

        In general, we found the training and validation loss 
trajectories to be smoother for the BiLSTM model than it was 
for the LSTM model. Each epoch takes longer to complete 
for the BiLSTM model than the LSTM model as the input 
sequences is processed in both the forward and backward 
directions in two hidden layers in the former case. However, 
since the BiLSTM model converges faster, they only need to 
be trained for a shorter number of epochs as compared to the 
LSTM model. 
        We used the best performing LSTM and BiLSTM 
models to classify the test dataset and derive the precision and 
recall metrics too, in addition to the accuracy and f1-scores 
stated earlier. We get a precision score of 0.793 and a recall 
score of 0.775 using the LSTM model with a dropout of 0.3 
and a precision score of 0.812 and a recall score of 0.811 
using the BiLSTM model with a dropout of 0.5. Confusion 
Matrices normalized over the actual counts of the various 
class labels were generated for both scenarios to better 
analyze the performance of the trained models on the test data 
and to see if the models performed better on certain class 
labels than it did on the others. The generated Confusion 
Matrix for the best LSTM model can be seen in Figure 23(a) 
and the same for the best BiLSTM model can be seen in 
Figure 23(b). 
        The LSTM model with a dropout of 0.3 performed very 
well for the ‘none’ and the ‘depression’ class labels, 
classifying them with an accuracy of 87.5% and 82.7%, 
respectively. The worst performance of this model was seen 
for the ‘bipolar’ class label. It was only able to achieve an 
accuracy of 64.5% for this class. We also see that 18.1% of 
the test data points under the ‘bipolar’ class label get 
misclassified under the ‘depression’ class label. Similarly, 
14.9% and 11.3% of the test data points under the ‘anxiety’ 
and ‘ptsd’ class labels, respectively, get misclassified under 
the ‘depression’ class label. 
        The BiLSTM with a dropout of 0.5 demonstrated the best 
performance for the ‘none’ class label, achieving an accuracy 
of 94.4%, followed by an accuracy of 86.7% for the ‘adhd’ 
class label. The BiLSTM model can classify the test data 
points of the ‘anxiety’ and ‘ptsd’ class labels much better. We 
see only 6% of the ‘anxiety’ data points and 3.2% of the ‘ptsd’ 
data points get misclassified under the ‘depression’ class label. 



Interestingly, the accuracy of the ‘depression’ class label goes 
down to 69% for the BiLSTM model in contrast to 82.7% for 
the LSTM model. We see that 8.1% and 7.7% of the 
‘depression’ data samples get misclassified under the ‘bipolar’ 
and ‘anxiety’ class labels, respectively by the BiLSTM model. 
        It is easy to see why see such high accuracies for the 
‘none’ class label achieved by both models. The words present 
in posts belonging to this category would generally be 
different as compared to the words that would be commonly 
present in posts belonging to any of the other class labels. On 
the other hand, the other class labels, namely ‘adhd’, ‘anxiety’, 
‘bipolar’, ‘depression’ and ‘ptsd’, are very closely related and 
would have a very high probability of common words 
occurring in the posts tagged to each of these labels. 
Consequently, both the models occasionally tend to 
misclassify data points belonging to these five class labels, 
although the BiLSTM model performs consistently performs 
better than the LSTM model except for the ‘depression’ class. 
 

 
 

Fig. 23. (a) Normalized Confusion Matrix generated after classifying the 
test dataset using the trained LSTM model with a dropout of 0.3 (b) 

Normalized Confusion Matrix generated after classifying the test dataset 
using the trained BiLSTM model with a dropout of 0.5 

2) BERT Model 
        Due to training being extremely time-consuming as well 
as computationally expensive we only trained BERT for 3 
epochs. In addition, training the BERT model for over 3 
epochs seemed to end up overfitting our data shown by the 
increase in loss function. 

 
Fig. 24. Training & Validation Loss vs Epoch for BERT 

        Like LSTM, our BERT model performed poorest when 
detecting bipolar classes. Also similar was that BERT 
performed best when detecting the “none” class as well as 
ADHD. Our model performed worst in classifying anxiety as 
well as bipolarism, misclassifying most data into depression, 
anxiety with 12% and bipolar with 9%. We suspect that it is 
because these mental health conditions have overlapping 
symptoms and are difficult for even professionals to detect. 

 

Fig. 25. Normalized Confusion Matrix for Mental Illness generated after 
classifying the test dataset using the trained BERT model with a dropout of 

0.15 

        For example, bipolarism and depression are similar in 
that both include periods of feeling low mood or lack of in 
everyday activities and previously bipolar disorder was 
named “manic depression”. 

X. CONCLUSION 
        The tasks designed for the project were fulfilled. We 
were able to experiment with multiple traditional and deep 
learning models. We were also able to analyze the results and 
determine the reasons for predictions and other metric values. 
        It was found that Logistic regression performed the best 
amongst various other traditional models. We also discovered 
that Tfidf Vectorizer with a ngram range gives better results 
than Count Vectorizer. Feature importance based on 
coefficients of Logistic Regression model can explain the 
predictions made by the model. 
        We found that the BiLSTM model gives better results 
when compared to the LSTM model for this test classification 
task, possibly because it processes the input sequence in both 
forward and backward directions within two hidden layers. 
Although it takes slightly longer to train the BiLSTM for one 
epoch, it converges faster and overall yields a smoother 
learning curve. Dropout is extremely essential to prevent 
overfitting and ensure generalization of the results. 
        Our Bert had the best results by a small margin. Beating 
our next best model Logistical regression with an 84-85% 
accuracy.  Possible improvements could involve using a 
different BERT model, for example bert-large instead of bert-
based-uncased. 

XI. EXTRAS: DEPRESSION SEVERITY 
        Our successes in predicting mental health status from the 
mental illness database were after a failed attempt at 
classifying another dataset during the first part of our report 
submission. Following our failed attempt to classify our 
depression dataset during the first milestone of our report, we 
needed a better model to train the data. Using tf-idf 
vectorization followed by logistic regression to classify 
depression severity was going to be difficult. Especially 
because data retrieval of the depression severity dataset 
involved obtaining tweets that contained symptoms of 
depression or their synonyms. 
Thus, options moving forward were: 



1. Find a new dataset which did not retrieve datasets based 
off existing keywords. 

2. Find a more sophisticated model to train our data. 

A. Depression Severity Dataset Results: 
As using BERT was not taught in class, many mistakes were 
made during configuration encoding as well as the 
configurations of the final layer of the model. Thus, before 
we jumped right into multi class classification, the data was 
split into binary classes, depressed and non-depressed for 
what we thought may have been a simpler model to train. The 
results are shown below: 

1) Binary Depression 

 
 
Fig. 26. Depression Severity Binary: Training & Validation Loss vs Epoch 

for BERT 

As we can see from the graph the model stayed around 90% 
accuracy. And this was after the data was balanced by 
removing many of the non-depressed cases. Once we had 
these results, we felt that it was time to move on to identify 
the severity of depression using the same dataset. 

2) Multi-Class Depression Severity 
a) Balanced Dataset.  

 
 
Fig. 27. Depression Severity Multi Class Balanced: Training & Validation 

Loss vs Epoch for BERT 

As we can see the accuracy is at an acceptable 75%. We 
thought the model could have been improved. If you study 
the confusion matrix below, we will see that true severe cases 
are predicted as mild or non-depressed 1.7% of the time. True 
non-depressed cases are labelled as moderate or severe 7% of 
the time.  

 

Fig. 28. Normalized Confusion Matrix for balanced depression severity 
dataset generated after classifying the test dataset using the trained BERT 

model with a dropout of 0.15 

Fig. 29.  

b) Non-Balanced Dataset 
We hypothesised that false positives (having non-depressed 
classified as moderate/severe) could be removed by training 
the model on the imbalanced dataset where non-depressed 
cases were not removed for balancing. Here are the results. 

 
 
Fig. 30. Depression Severity Multi Class Balanced: Training & Validation 

Loss vs Epoch for BERT 

 

Fig. 31. Normalized Confusion Matrix for imbalanced depression severity 
dataset generated after classifying the test dataset using the trained BERT 

model with a dropout of 0.15 

As we can see the number of cases which were true non-
depressed but predicted moderate or severe dropped to 
0.0087%, down from 7% of the balanced model. However, 
true severe cases were detected as mild or non-depressed 
12% of the time compared to the balanced model at only 
1.7% more than 5 times more.  

In summary the imbalanced dataset created a bias, 
favoring detection towards the mild and moderate cases of 
depression.  

XII. FUTURE WORK  
 While the models developed provide valuable insights and 
good accuracy, we would still like to explore various other 
relevant models like Recurrent CNNs and check how well our 
current models are working with unknown data. The current 
model focusses on some of the mental issues, we intend to 
broaden our horizon and, if possible, develop an application 
that could track and notify a person about his/her mental 
health condition (if provided with necessary permissions). 

 Including Explainable AI would be a very important 
aspect of our future work as it improves trustworthiness and 
transparency and provides important insights as to how the 
model is making predictions or classifications, which can help 
the user and mental health professionals better understand the 
factors contributing to the mental health issues. 
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XV. APPENDIX A 
How to run the code 

 

A. EDA and Pre-processing 
1. Ensure that the data is placed in Data folder which is 

in the same directory as the textPreprocessing.ipynb 
file. 
 
 
 

 
 

B. Traditional Models and Feature Importance 
1. Open the notebook named, “Traditional models - 

Mental Health Classification.ipynb” 
2. Update the paths to the following preprocessed 

files: 
preprocessed_train.csv 
preprocessed_val.csv 
preprocessed_test.csv 

3. Execute the cells in the notebook to see the output 
 

C. LSTM 
1. Open the folder DeepNN_MentalHealthClassification and 
ensure that the data folder, containing the 
preprocessed_train.csv, proceprocessed_val.csv and 
preprocessed_test.csv files is inside 
2. Run lstm_classifier.py 

 

D. Bert 
1. Open notebook named, “BERT - MentalyStable.ipynb” 
2. Update paths of the following files: 

a. bert_preprocessed_train.csv 
b. bert_preprocessed_val.csv 
c. bert_preprocessed_test.csv 
d. deptweet_dataset.xlsx 

3. Execute code in notebook to see output. You may need a gpu to 
train the models otherwise it may be slow. 

 
 
 
    
    
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

train_dir = os.path.join(os.getcwd(), 'Data/both_train.csv') 

val_dir = os.path.join(os.getcwd(), 'Data/both_val.csv') 

test_dir = os.path.join(os.getcwd(), 'Data/both_test.csv') 
 


