

Wellbeing Watch (Group 4: Mentally Stable)

Pritam Dutta
A0248400N (E0925552)

Master of Computing
National University of

Singapore
e0925552@u.nus.edu

Prabhat Ranjan
A0228355B (E0673180)

Master of Computing
National University of

Singapore
e0673180@u.nus.edu

Tanamate Foo Yong Qin
A0237342J (E0767625)

Master of Computing
National University of

Singapore
e0767625@u.nus.edu

Lalitha Ravi
A0268254X (E1101553)

Master of Computing
National University of

Singapore
e1101553@u.nus.edu

Abstract—Mental wellbeing is a major issue not only in
Singapore but also the rest of the world. This paper aims to find
methods of classifying mental health problems in online text, in
hopes that these problems can be detected early and if serious
enough intervened. The focus of this report is classifying different
mental health problems accurately. To do so different approaches
have been taken, these include more traditional approaches such
as tf-idf vectorization followed by logistic regression and deep
learning methods which involve LSTM layers or BERT.

Keywords—mental health, logistic regression, lstm, bert

I. INTRODUCTION
 This paper is created as an output for the final project of
CS5246 – Text Mining at National University of Singapore by
students of Group 4. The project offered a unique opportunity
for the team members to put the learnt algorithms into
practice. It also motivated us to look beyond the course
curriculum for other solutions to practical problems of mental
wellbeing.

 In recent years, mental wellbeing has become a major
health-related topic in Singapore. Mental health problems
come in all shapes and forms, with affected people seeking
help often not early enough, if at all. However, people share
their thoughts, fears, worries, etc. across social media and/or
online forums. In this project we explore classification of such
posts in social media into different mental health categories.

 The first part of the report mentions our motivation for the
project and datasets selected. We then describe the details of
EDA and preprocessing. The next part provides information
on the different traditional and deep learning models explored.
The results of prediction on validation and test data are
mentioned next. Finally, we present the analysis of the
predictions using explanation methods and conclude the
report.

II. MOTIVATION
Mental health is an increasingly important health related

topic of discussion, with millions of people all over the world
suffering from mental health issues such as depression and
anxiety. Unfortunately, individuals who are suffering from
mental health problems often do not seek help due to stigma,
lack of awareness, stressful and busy lifestyle.

In recent past years, social media has become a go to
platform for people to share their thoughts, feelings, and
experiences, including those related to mental health. This
provides us with a unique opportunity to make use of social
media data to predict and monitor mental health of individuals
and improve access to mental health care.

The goal of this project is to develop a classification model
that can accurately predict whether the posts of an individual

reflect an issue with mental wellbeing, and we also try to
identify five broad classes of mental illnesses - depression,
anxiety, bipolar disorder, ADHD (attention deficit
hyperactivity disorder), PTSD (Post Traumatic Stress
Disorder) and an additional ’None’ class (which does not
pertain to any mental illness).

There are many potential applications for a model like this,
like it could be used for the early identification of people who
are at the risk of depression, mental health campaigns, mental
health research, personalized mental health support etc.
Furthermore, we intend to explore the potential of this model
to shortlist people who opt-in for self-mental health
monitoring on social media platforms. We intend to alert them
if their previous posts continuously reflect signs of depression.

By leveraging social media data and the latest deep
learning techniques, we believe that there is potential to
improve the overall awareness regarding mental health and its
treatment among individuals and the society. The
development of a classification model that can accurately
predict depression using social media data could be highly
instrumental in achieving this goal.

III. DATA

A. Data Collection
Obtaining high-quality data that is appropriately annotated

for mental health issues proved to be a challenging task, as
numerous pertinent datasets are not publicly available and are
typically loaned exclusively for research purposes. However,
after careful consideration and evaluation of various options,
we ultimately chose to utilize two datasets in this project. The
first dataset [1] consists of tweets related to mental health
issues. The second dataset was sourced from [2] and is a
combination of subreddits and blogs.

B. Dataset
[1] was dropped as the data was highly unbalanced.
[2] dataset has a total of six classes associated with a

mental illness namely:

1. ‘adhd’: Neurodevelopmental disorder characterized
by inattention, hyperactivity, and impulsivity.

2. ‘bipolar’: Mood disorder marked by episodes of
mania (elevated mood) and depression.

3. ‘depression’: Mental disorder characterized by
persistent feelings of sadness, hopelessness, and loss
of interest.

4. ‘anxiety’: Mental disorder characterized by excessive
worry, fear, and nervousness.

5. ‘ptsd’: Mental disorder that can occur after
experiencing or witnessing a traumatic event, causing

persistent symptoms of anxiety, avoidance, and
distress.

6. ‘none’: No mental health issues.

The whole dataset was already divided into training,
validation and training splits. The training, validation and test
datasets have 13727, 1488 and 1488 data points, respectively.

IV. EXPLORATORY DATA ANALYSIS BEFORE
PREPROCESSING

We started off with the EDA by checking if the classes are
well balanced in the dataset. Though the dataset is not
perfectly distributed, class labels are arguably well balanced
in training dataset and equally distributed in the validation and
test dataset

Fig. 1. Class Distribution Train

Data

Fig. 2. Class Distribution Val
Data

A. Character Count/ Text Length
Text length or number of characters range from 150 to

38261, with an average length of approximately 1133 and a
standard deviation of approximately 1381. The majority of
text lengths fall between 426 and 1306 approximately.

Table
Head

Train Text Length Summary
Table column subhead Subhead

1 count 13727.000000

2 mean 1133.409485
3 std 1381.169545
4 min 150
5 25% 427
6 50% 723
7 75% 1306
8 max 38261

Fig. 3. Text Length Summary

B. Word Count
Word counts range from 29 to 6973, with an average

count of approximately 209 (Refer box plot for visual
representation). Most text word counts fall between 80 and
245.

Table 1
Train Data Word Count Summary

Table column subhead Subhead

1 count 13727.000000

2 mean 209.842937

3 std 250.509970

Table 1
Train Data Word Count Summary

Table column subhead Subhead

4 min 29.000000

5 25% 80.000000

6 50% 135.000000

7 75% 245.000000
8 max 6973.000000

Fig. 4. Word Count Summary

C. Visualising N Grams for different Mental Health
Problems

We visualise the top 5 one, bi and tri grams for each
class label excluding the stop words (This is not part of pre-
processing.) Adhd, Anxiety, Depression, Bipolar & Ptsd

-

Fig. 5. ADHD N-Grams

Fig. 6. Anxiety N-Grams

Fig. 7. Depression N-Grams

Fig. 8. Bipolar N-Grams

Fig. 9. PTSD N-Grams

V. DATA PREPROCESSING
Below enumerated steps were followed during pre-

processing.
1. As social media text may contain a lot of emojis, we

first converted emojis and emoticons to their text
meaning. We used emoji and emot libraries
respectively for this purpose.

2. Contractions like I’ve were converted to “I have”
(Library used: text hammer)

3. Emails were removed (Library used: text hammer)

4. Html tags were removed (Library used: text hammer)

5. Special Characters were removed. (Library used: text
hammer)

6. Accented characters were removed (Library used: text
hammer).

7. Some most common words with multiple occurrences
of a letter, example "coooool" turns into --> cool was
replaced. (Regex)

8. Some common acronyms, typos and abbreviations
were corrected (Regex).

9. Some common words with multiple occurrences of a
letter, which were not handled previously are taken
care of using regex.

10. Punctuation marks other than exclamation and
Question mark were removed. These were retained to
check the strong sentiment expressed by exclamation
mark and doubt or uncertainty expressed by question
mark.

11. Ellipses were removed.

12. Stop words were removed. Note: Negation words and
pronouns were retained. Pronouns were retained as
some of the researches have indicated that depressed
people often use more pronouns like I, me , myself.

13. Lemmatisation was performed using spacy.

VI. EXPLORATORY DATA ANALYSIS AFTER
PREPROCESSING

A. Most Frequent Words
10 most frequent words for each mental issue were

identified and plotted, our preprocessing was further refined
to avoid typos for such words.

Fig. 10. Depression 10 most frequent words

Fig. 11. Bipolar 10 most frequent words

Fig. 12. ADHD 10 most frequent words

Fig. 13. PTSD 10 most frequent words

B. Word Count (Tokens)
Tokens word counts range from 149 to 3963, with an

average count of approximately 125(Refer box plot for visual
representation). The majority of text word counts fall
between 48 and 146. Given that majority of the words lie in
this range we have chosen the word embedding size for one
of our models to be 200

C. Average Word Count For Each Class Label
When we calculated the average word count for each

class label and plotted it we noticed that the idea that a person
exhibiting more mental issues tend to write longer posts was
not reflected in this dataset, so we will not be considering this
as an important feature in the currentscope.

Fig. 14. Average Word Count by Label

VII. METHODOLOGY
This section describes the methodology used in the

project to train and test the models. Both traditional as well
as deep learning models were used.

A. Traditional Models
We used the following base models during this project:

• K-Nearest Neighbor (KNN)
• Naive Bayes
• Decision Tree
• Random Forest
• Logistic Regression

KNN helps capture local patterns by considering k-nearest
data points. Naive Bayes was used for the assumption that the
features are conditionally independent given the class label.
Decision Trees and ensemble Random Forest was used to

check for non-linear relationships and handle high-
dimensional noisy data. Logistic Regression was used to get.
interpretable coefficients that represent the effect of each term
on the prediction.

All the above models were trained using the default
parameters and performance was measured. The performance
of these models was measured by calculating Accuracy,
Precision, Recall and F1-score of predictions on validation
and test data. Since these are the standard metrics for Machine
Learning models, we will not elaborate on this selection.

We then selected the best performing model for further
hyperparameter tuning. The detailed results of the models are
covered in subsequent sections. Amongst the traditional
models, Logistic Regression had the highest accuracy,
precision, recall and f1 score. GridSearchCV was used to find
the best parameters for Logistic regression model. Three
options for parameter, ‘C’ was fed to GridSearchCV. A
smaller value of 0.1 was added to see the results from stronger
regularization. A large value of 10 was added with the hope
that larger coefficient values can better fit the training data. A
medium value of 1.0 was also checked to rule out the
possibilities of underfitting and overfitting from the two
extreme values respectively.

The Tfidf vectorizer was used before feeding the training
data to the base models. The vocabulary built had 41,185
features. For the further tuning of best model, we limited the
vectorizer to produce a maximum of 20,000 features. This was
done to reduce dimensionality and prevent risks of overfitting.
We experimented with the following 4 Vectorizers to find the
best option:

• Count Vectorizer
• Tfidf Vectorizer
• Count Vectorizer with ngram range (1,2)
• Tfidf Vectorizer with ngram range (1,2)

 Count Vectorizer was selected to determine how well the
model performs in terms of capturing term frequency or count
of individual tokens. Tfidf was selected to seek important
terms based on both frequency and rarity within the reviews.
The n-grams were explored to capture local contextual
information in the text.
 Finally, we used the Feature Importance Explanation
method to analyze the results. The absolute values of
coefficients produced by the Logistic regression model was
used as feature importance. We selected this approach because
it helped us determine the top 20 features representing each
class. A larger magnitude of the coefficient indicates a
stronger influence of the feature or term on model’s
prediction. We were able to interpret both the correct and
incorrect predictions using this knowledge.

B. Deep Learning Models
1) Recurrent Neural Networks

 We also used Recurrent Neural Network (RNN) based
text classifiers such as LSTM (Long-Short Term Memory)
and Bidirectional LSTM (BiLSTM) on our dataset to
compare the results with those obtained using traditional
Machine Learning models. We know that LSTM is a variety
of RNN that can learn long-term dependencies, especially in
sequence-based prediction problems. LSTM neural networks
can solve numerous tasks that are not solvable by vanilla
RNNs. Long-term temporal dependencies can be captured
effectively by LSTM, without suffering much optimization
hurdles.

 The BiLSTM is an upgrade on top of the basic LSTM. In
BiLSTM, the information is obtained by processing the
sequence in both forward and backward directions within two
hidden layers. Both the sequences are connected to the same
output layer. BiLSTM has complete information about every
point in each sequence, everything before and after it, thus,
placing them above LSTMs with respect to performance in
text classification tasks.
 We use LSTM and BiLSTM models with the below
structures for this project. The number of neurons in the output
layer is 6 because there are a total of 6 class labels.

• LSTM: The model is structured in the order:
Embedding layer [Vocabulary size x 300 (word
embedding length)], dropout, LSTM layer [300 x 64],
Linear layer [64 x 6].

• BiLSTM: The model is structured in the order:
Embedding layer [Vocabulary size x 300 (word
embedding length)], Bidirectional LSTM layer [300 x
64], Linear layer [256 x 64], Linear layer [64 x 6].
ReLU is used as the activation function and dropout
is used.

 Pretrained word embeddings from Global Vectors of
length 300 have been used to convert the texts to their
corresponding feature vectors for the LSTM-based models.
All unique words from the training dataset are collected to
make up the master vocabulary. For unknown or Out-of-
vocabulary (OOV) words, a vector of length 300 comprising
of random numbers between -0.25 and 0.25 is generated and
used as the embedding. An encoding is generated for each
text record with the indexes of the constituent words from the
master vocabulary. The encoding length is chosen to be 400
based on the mean, maximum and 90th quartile of the number
of words (tokens) in each record of the preprocessed dataset.

2) BERT Model
 Based on a lot of anecdotal evidence as well,
recommendations from blog articles as well as the final
lecture discussing the topic, transformer-based models, most
notably- BERT trained models which were superior to
embedded LSTM models as well as Tfidf models in
classifying data accurately. This is due to BERT’s model
having a self-attention mechanism which leads it to having
no locality bias and provides equal opportunity towards all
contexts - from long distance to short distance context. Thus,
we decided to use BERT to see if higher accuracies could be
achieved.

a) Pre-processing (BERT)
Pre-processing steps for training BERT were mostly the same
as the others with a few key differences. These include:

1. Removal of stop-words
2. Removal of punctuation
3. Tokenization
4. Balancing the dataset (for the depression severity

dataset)
 Intuitively, as the benefit of BERT over more traditional
approaches is that it learns to compute text representations in
context, removal of stop words and punctuation will not
improve and in some cases negatively affect the model. For
example, consider the following sentence before and after
removal of stop words and punctuation:

Input: “I was depressed. But now I feel fine!”
Result: “depressed. feel fine!”
 If only considering the output it is ambiguous for a
human, let alone a machine to tell the state of depression let
alone the severity. As a result, stop-words were not removed.
The same goes for punctuation: a question mark can certainly
change the overall meaning of a sentence. Therefore,
removing stop words and punctuation would just imply
removing context which BERT could have used to get better
results. We must consider that the benefit of BERT is that it
learns to compute text representations in context.
 Tokenization is unnecessary in the pre-processing step
as BERT does that anyways during the encoding step when it
makes the input ids and the attention masks. Encoding was
slightly different to the LSTM model. To train the model, text
must be encoded into attention masks and input ids. Attention
masks are padding or truncation to direct models to the same
number of tokens, so they have the same input shape. Input
ids are a mapping between tokens and their respective ids.
 Balancing the dataset for training the model is self-
explanatory. The depression severity dataset had over 90%
cases as non-depressed and we were worried if trained on
this, the accuracy metric may not have reliably informed us
on how well the model performed.

b) Training
 To train the model the encoded data was passed into the
model and depending on the results needed the output layer
was adjusted accordingly.
 We will split the reporting into two parts based on the 2
different datasets.

1. Mental Illness Multi-Classification Dataset.
2. Extras: Depression Severity Dataset

VIII. PREDICTIONS AND PERFORMANCE

A. Traditional Models

Fig. 15. Accuracy and Precision on Validation data

The trained models on default parameters were used to run
predictions on both validation and test data. The results from
the validation data are shown above in Figure 15. It is seen
that the Logistic Regression model had the best performance
amongst the traditional models with an accuracy of 0.81
followed by Random Forest at 0.8. This is because both these
models can capture complex interactions between words.
They are also robust to handling incomplete sentences and
outliers in text data.
 On the other hand, KNN had the lowest score of 0.5
because it can easily suffer from curse of dimensionality.

Since the number of words in the default training was higher
than 40,000; the feature space was high dimensional. KNN
relies on the distances between data points and as the count
of dimensions increase, the distances tend to converge. This
reduces the discriminatory power of KNN and leads to a
lower accuracy.
 The results for Recall and F1-Score are shown in the
image below. The results for all the four metrics are very
close to each other for each model. This is because the dataset
is balanced between each class as seen during the EDA. The
results of the validation data and test data are also almost
same with similar scores for each model. It shows the
consistency of the models’ performance. So, we are not
mentioning it separately.

Fig. 16. Recall and F1-Score on Validation data

It is expected that the results could have improved for KNN
by choosing an appropriate value for hyperparameter K.
However, since Logistic Regression had the best scores, we
decided to select it for further optimization. The table below
shows the best value of parameter, ‘C’ that was obtained for
the different vectorizer methods.

We observe that the best value for both types of Count
Vectorizer is obtained as 0.1. This is because the features
extracted from the text just based on frequency of their
occurrence are less informative. So, a stronger regularization
is required to find the best classification accuracy. In the case,
Tfidf, a larger value of C indicates that the model performed
better with weaker regularization as the features extracted
from Tfidf are more informative and have higher predictive
power as compared to Count Vectorizer.

Hyperparameter ‘C’ and Different Vectorizers
Vectorizer C

Count Vectorizer 0.1

Tfidf Vectorizer 1.0
Count Vectorizer with ngram range
(1,2)

0.1

Tfidf Vectorizer with ngram range
(1,2)

10

Fig. 17. Best values for Logistic Regression ‘C’ using different vectorizers

We observe that the best value for both types of Count
Vectorizer is obtained as 0.1. This is because the features
extracted from the text just based on frequency of their

occurrence are less informative. So, a stronger regularization
is required to find the best classification accuracy. In the case,
Tfidf, a larger value of C indicates that the model performed
better with weaker regularization as the features extracted
from Tfidf are more informative and have higher predictive
power as compared to Count Vectorizer

 We also observe the difference in value of ‘C’ obtained
when using the ngram range with Tfidf vectorizer. The
inclusion of bigrams increased the feature space, which
meant the model required even a weaker regularization or a
high value of ‘C’ as 10 to avoid underfitting and a better
capture of contextual information.

The figure below compares the performance of each of the
vectorizer techniques with the best values of ‘C’ obtained for
them. In order to highlight the difference, the scale has been
reduced to show the bars between scores of 0.8 and 0.85 only.

Fig. 18. Performance of Tuned Logistic regression after different

vectorization

We observe that although the performance of all the 4
types is very close to each other, the Tfidf Vectorizer with
ngram range has the best accuracy of 83.3%. This is because
it can capture more contextual information using the bigrams.
It resulted in having features that had more predictive power
and could capture multi-word expressions.

B. Deep Learning Models
1) Recurrent Neural Networks

 As mentioned before, the dataset was already split into
training, validation and test from the start. Both the LSTM
and BiLSTM models were trained on the training dataset and
validated against the validation dataset. The BiLSTM model
was found to be converging faster than the LSTM model. We
trained the LSTM model for 40 epochs and the BiLSTM
model for 20 epochs. Learning rates of 0.005 and 0.0001 with
an Adam optimizer were used for the LSTM and the BiLSTM
models, respectively. We chose to use the Adam optimizer as
it is adaptive in comparison to other optimization algorithms
like Stochastic Gradient Descent (SGD) and is known to yield
faster and better results. The Cross-Entropy Loss and
accuracy/f1-score metrics were recorded for both the training
and validation splits at the end of every epoch. The pretrained
weights used for the models and the state dictionary of the
trained model were saved to disk for testing the performance
of the model on the test dataset.

 In order to analyze the effect of dropout rates on these
models, we use dropout values of 0.2, 0.3 and 0.5 to train,
validate and test the LSTM and BiLSTM models. A
consolidated view of the results obtained can be seen in Table
I. For every scenario, we use the model state dictionary for
the epoch after which the validation loss becomes greater
than the training loss and starts to increase. Based on this
approach, we use the state dictionaries of epoch 7, 19 and 29
as the final trained models for LSTM with dropout values of
0.2, 0.3 and 0.5, respectively. Similarly, we use the state
dictionaries of epoch 8, 9 and 12 as the final trained models
for BiLSTM with dropout values of 0.2, 0.3 and 0.5,
respectively.

Table 3 Validation and Test results for LSTM-based models

Model (dropout)
Validation Data Test Data

Accuracy f1-score Accuracy f1-score

LSTM (0.2) 0.733 0.737 0.710 0.716

LSTM (0.3) 0.790 0.795 0.775 0.778

LSTM (0.5) 0.790 0.794 0.755 0.758

BiLSTM (0.2) 0.819 0.820 0.798 0.800

BiLSTM (0.3) 0.816 0.817 0.807 0.807

BiLSTM (0.5) 0.823 0.823 0.811 0.810

Fig. 19. Validation and Test results for LSTM-based models

 The LSTM model demonstrates the best performance
with a dropout value of 0.3. It achieves a validation accuracy
and f1-score of 0.790 and 0.795, respectively and a test
accuracy and f1-score of 0.775 and 0.778, respectively. On
the other hand, the BiLSTM model gives the best
performance with a dropout value of 0.5. We get a validation
accuracy and f1-score of 0.823 and 0.823, respectively and a
test accuracy and f1-score of 0.811 and 0.810, respectively.
Between the two models, the BiLSTM consistently
demonstrates better performance, as is expected based on
previous research on the subject.

2) BERT Model
a) Mental Illness Multi-Classification Results:
To compare accuracies to the other 2 approaches,

Tfidf logistical regression as well as LSTM approaches
models, our BERT model was fitted to this dataset as well.
We truncated the text to a maximum of 1500 length which
was a more than 5 standard deviations away from the mean
text length accounting for more than 99% of the data, which
we thought was sufficient. Encoding and training this data
took a little under 2 hours after purchasing collab pros
compute units. These are the results:

Validation and Test results for BERT-based models

Model (dropout)
Validation Data Test Data

Accuracy f1-score Accuracy f1-score
Bert-base-
uncased
 (0.15)

0.847 0.848 0.843 0.844

 As we can see BERT performs extremely well with an
accuracy of 84-85% and we see the f1-scores at 0.84-0.85
which is highest among all other prediction methods.

IX. EXPLANATIONS AND ANALYSIS
This section covers the analysis and discussion on how the

predictions of the model can be explained.

A. Traditional Models
Feature Importance was used to test the interpretability

of the tuned Logistic Regression model. The top ten features
obtained for each class is mentioned in the figure below.

Fig. 20. Performance of Tuned Logistic regression after different

vectorization

 It is observed that the term mentioning the name of the
class has the highest importance which is expected. For
example, the term, ‘adhd’ has the importance of 29.73 which
is the highest for the class, ‘adhd’. The category, ‘none’
contains generic terms that are not used in the context of a
mental wellness. Two documents from each class were
selected randomly to further analyze the prediction. We
present analysis of two such results here, one where the
prediction matched the actual class and another where the
prediction was different. We will refer them as Test A and
Test B.

 The text from user’s post for Test A was the following:
“does anyone here not take medication? i was diagnosed a
few months ago. i really don't know if the story is important.
we are dead broke and all i can do is work as much as i can
to try and stay fed and sheltered. because of recent years
incomes from my wife's business wwe don't qualify for
assistance. i am now not struggling with any mania or
paralyzing depression, probably mostly due to hard physical
work that i recently started doing. lithium made me feel panic
attacks like my limbs were turning to stone and a little
creature was trying to burrow out the front of my skull. my
wife verifies i am much calmer, am not paranoid or
delusional-seeming, and that medication seemed to harm
more than help. i know it is simple-minded to assume that one
experience with a medication means i won't ever benefit. if
the nukes don't get us and i continue to climb out of the dark
trench toward better times, i don't know whether there is a
need to seek medication. i would love to know if there are
others who for whatever reason aren't taking anything
(pharmaceuticals, weed, etc.) and are happier for it.”

 The actual class as mentioned in the dataset is ‘bipolar’
and the prediction of the model is also ‘bipolar’. The
prediction probability of the different classes for this test are
shown in the table <Add number>. We observe that the post

has the term ‘depression’ that has high feature importance for
‘depression’ class. However, it also has the term ‘mania’
which has high feature importance for the ‘bipolar’ class.

Table
4

PREDICTION PROBABILITY
Class Test A Test B

1.
adhd 0.07150 0.00048

2. anxiety 0.01766 0.00008

3. bipolar 0.87412 0.00072

4. depression 0.00520 0.00036

5. ptsd 0.03016 0.99830

6. none 0.00133 0.00005

Fig. 21. Probability assigned by Logistic regression for each class

The text from user’s post selected as Test B is shown below:
“do you guys get nightmares? i had the worst one of my life
tonight. i was psychotic and had a flashback to my attempt.
multiple times. my hand was talking to me and telling me bad
things. i have 3-4 nightmares a week and they aren't getting
better. i don't know why this is happening.”

 The actual class mentioned in the dataset is ‘bipolar’ but
the predict class is ‘ptsd’. The prediction probability of the
different classes for this test are shown in the table above. We
observe a big difference in the prediction probability for the
actual and predicted class where ‘ptsd’ received a probability
of 99% as compared to ‘bipolar’ that has 0.07%. This is
because the document contains words like, ‘flashback’ and
‘nightmare’ that have high importance for the class ‘ptsd’ as
seen in the ‘Top 10 Features by category’ table.

B. Deep Learning Models
1) Recurrent Neural Networks

 The plots depicting the variation of training and
validation loss/f1-score versus epochs for the various dropout
values were captured for both the LSTM and the BiLSTM
models. The plots for the LSTM model with a dropout of 0.3
and the BiLSTM model with a dropout of 0.5 can be seen in
Figure 22, (a) - (d).
 The LSTM and BiLSTM models, in their pursuit of
trying too hard to learn different features from the training
data, can sometimes learn the statistical noise in the training
dataset. This can definitely improve the model performance
on the training dataset, but the trained model would then fail
massively on unseen data (e.g. test dataset). This would
indicate that the model is overfitting on the training data.
Hence, we use dropout, which is the practice of randomly
dropping out the nodes in the input and hidden layers of a
neural network. All the forward and backwards connections
with a dropped node are temporarily removed, thus creating a
new network architecture out of the parent network. The nodes
are dropped by the dropout probability which we specify when
creating the model. This helps the models to prevent the
overfitting problem.

Fig. 22. (a) Training & Validation Loss vs Epoch for LSTM with a dropout
of 0.3 (b) Training & Validation f1-score vs Epoch for LSTM with a dropout
of 0.3 (c) Training & Validation Loss vs Epoch for BiLSTM with a dropout
of 0.5 (d) Training & Validation f1-score vs Epoch for BiLSTM with a
dropout of 0.5

 In general, we found the training and validation loss
trajectories to be smoother for the BiLSTM model than it was
for the LSTM model. Each epoch takes longer to complete
for the BiLSTM model than the LSTM model as the input
sequences is processed in both the forward and backward
directions in two hidden layers in the former case. However,
since the BiLSTM model converges faster, they only need to
be trained for a shorter number of epochs as compared to the
LSTM model.
 We used the best performing LSTM and BiLSTM
models to classify the test dataset and derive the precision and
recall metrics too, in addition to the accuracy and f1-scores
stated earlier. We get a precision score of 0.793 and a recall
score of 0.775 using the LSTM model with a dropout of 0.3
and a precision score of 0.812 and a recall score of 0.811
using the BiLSTM model with a dropout of 0.5. Confusion
Matrices normalized over the actual counts of the various
class labels were generated for both scenarios to better
analyze the performance of the trained models on the test data
and to see if the models performed better on certain class
labels than it did on the others. The generated Confusion
Matrix for the best LSTM model can be seen in Figure 23(a)
and the same for the best BiLSTM model can be seen in
Figure 23(b).
 The LSTM model with a dropout of 0.3 performed very
well for the ‘none’ and the ‘depression’ class labels,
classifying them with an accuracy of 87.5% and 82.7%,
respectively. The worst performance of this model was seen
for the ‘bipolar’ class label. It was only able to achieve an
accuracy of 64.5% for this class. We also see that 18.1% of
the test data points under the ‘bipolar’ class label get
misclassified under the ‘depression’ class label. Similarly,
14.9% and 11.3% of the test data points under the ‘anxiety’
and ‘ptsd’ class labels, respectively, get misclassified under
the ‘depression’ class label.
 The BiLSTM with a dropout of 0.5 demonstrated the best
performance for the ‘none’ class label, achieving an accuracy
of 94.4%, followed by an accuracy of 86.7% for the ‘adhd’
class label. The BiLSTM model can classify the test data
points of the ‘anxiety’ and ‘ptsd’ class labels much better. We
see only 6% of the ‘anxiety’ data points and 3.2% of the ‘ptsd’
data points get misclassified under the ‘depression’ class label.

Interestingly, the accuracy of the ‘depression’ class label goes
down to 69% for the BiLSTM model in contrast to 82.7% for
the LSTM model. We see that 8.1% and 7.7% of the
‘depression’ data samples get misclassified under the ‘bipolar’
and ‘anxiety’ class labels, respectively by the BiLSTM model.
 It is easy to see why see such high accuracies for the
‘none’ class label achieved by both models. The words present
in posts belonging to this category would generally be
different as compared to the words that would be commonly
present in posts belonging to any of the other class labels. On
the other hand, the other class labels, namely ‘adhd’, ‘anxiety’,
‘bipolar’, ‘depression’ and ‘ptsd’, are very closely related and
would have a very high probability of common words
occurring in the posts tagged to each of these labels.
Consequently, both the models occasionally tend to
misclassify data points belonging to these five class labels,
although the BiLSTM model performs consistently performs
better than the LSTM model except for the ‘depression’ class.

Fig. 23. (a) Normalized Confusion Matrix generated after classifying the
test dataset using the trained LSTM model with a dropout of 0.3 (b)

Normalized Confusion Matrix generated after classifying the test dataset
using the trained BiLSTM model with a dropout of 0.5

2) BERT Model
 Due to training being extremely time-consuming as well
as computationally expensive we only trained BERT for 3
epochs. In addition, training the BERT model for over 3
epochs seemed to end up overfitting our data shown by the
increase in loss function.

Fig. 24. Training & Validation Loss vs Epoch for BERT

 Like LSTM, our BERT model performed poorest when
detecting bipolar classes. Also similar was that BERT
performed best when detecting the “none” class as well as
ADHD. Our model performed worst in classifying anxiety as
well as bipolarism, misclassifying most data into depression,
anxiety with 12% and bipolar with 9%. We suspect that it is
because these mental health conditions have overlapping
symptoms and are difficult for even professionals to detect.

Fig. 25. Normalized Confusion Matrix for Mental Illness generated after
classifying the test dataset using the trained BERT model with a dropout of

0.15

 For example, bipolarism and depression are similar in
that both include periods of feeling low mood or lack of in
everyday activities and previously bipolar disorder was
named “manic depression”.

X. CONCLUSION
 The tasks designed for the project were fulfilled. We
were able to experiment with multiple traditional and deep
learning models. We were also able to analyze the results and
determine the reasons for predictions and other metric values.
 It was found that Logistic regression performed the best
amongst various other traditional models. We also discovered
that Tfidf Vectorizer with a ngram range gives better results
than Count Vectorizer. Feature importance based on
coefficients of Logistic Regression model can explain the
predictions made by the model.
 We found that the BiLSTM model gives better results
when compared to the LSTM model for this test classification
task, possibly because it processes the input sequence in both
forward and backward directions within two hidden layers.
Although it takes slightly longer to train the BiLSTM for one
epoch, it converges faster and overall yields a smoother
learning curve. Dropout is extremely essential to prevent
overfitting and ensure generalization of the results.
 Our Bert had the best results by a small margin. Beating
our next best model Logistical regression with an 84-85%
accuracy. Possible improvements could involve using a
different BERT model, for example bert-large instead of bert-
based-uncased.

XI. EXTRAS: DEPRESSION SEVERITY
 Our successes in predicting mental health status from the
mental illness database were after a failed attempt at
classifying another dataset during the first part of our report
submission. Following our failed attempt to classify our
depression dataset during the first milestone of our report, we
needed a better model to train the data. Using tf-idf
vectorization followed by logistic regression to classify
depression severity was going to be difficult. Especially
because data retrieval of the depression severity dataset
involved obtaining tweets that contained symptoms of
depression or their synonyms.
Thus, options moving forward were:

1. Find a new dataset which did not retrieve datasets based
off existing keywords.

2. Find a more sophisticated model to train our data.

A. Depression Severity Dataset Results:
As using BERT was not taught in class, many mistakes were
made during configuration encoding as well as the
configurations of the final layer of the model. Thus, before
we jumped right into multi class classification, the data was
split into binary classes, depressed and non-depressed for
what we thought may have been a simpler model to train. The
results are shown below:

1) Binary Depression

Fig. 26. Depression Severity Binary: Training & Validation Loss vs Epoch

for BERT

As we can see from the graph the model stayed around 90%
accuracy. And this was after the data was balanced by
removing many of the non-depressed cases. Once we had
these results, we felt that it was time to move on to identify
the severity of depression using the same dataset.

2) Multi-Class Depression Severity
a) Balanced Dataset.

Fig. 27. Depression Severity Multi Class Balanced: Training & Validation

Loss vs Epoch for BERT

As we can see the accuracy is at an acceptable 75%. We
thought the model could have been improved. If you study
the confusion matrix below, we will see that true severe cases
are predicted as mild or non-depressed 1.7% of the time. True
non-depressed cases are labelled as moderate or severe 7% of
the time.

Fig. 28. Normalized Confusion Matrix for balanced depression severity
dataset generated after classifying the test dataset using the trained BERT

model with a dropout of 0.15

Fig. 29.

b) Non-Balanced Dataset
We hypothesised that false positives (having non-depressed
classified as moderate/severe) could be removed by training
the model on the imbalanced dataset where non-depressed
cases were not removed for balancing. Here are the results.

Fig. 30. Depression Severity Multi Class Balanced: Training & Validation

Loss vs Epoch for BERT

Fig. 31. Normalized Confusion Matrix for imbalanced depression severity
dataset generated after classifying the test dataset using the trained BERT

model with a dropout of 0.15

As we can see the number of cases which were true non-
depressed but predicted moderate or severe dropped to
0.0087%, down from 7% of the balanced model. However,
true severe cases were detected as mild or non-depressed
12% of the time compared to the balanced model at only
1.7% more than 5 times more.

In summary the imbalanced dataset created a bias,
favoring detection towards the mild and moderate cases of
depression.

XII. FUTURE WORK
 While the models developed provide valuable insights and
good accuracy, we would still like to explore various other
relevant models like Recurrent CNNs and check how well our
current models are working with unknown data. The current
model focusses on some of the mental issues, we intend to
broaden our horizon and, if possible, develop an application
that could track and notify a person about his/her mental
health condition (if provided with necessary permissions).

 Including Explainable AI would be a very important
aspect of our future work as it improves trustworthiness and
transparency and provides important insights as to how the
model is making predictions or classifications, which can help
the user and mental health professionals better understand the
factors contributing to the mental health issues.

XIII. ACKNOWLEDGMENT
We would like to express our sincerest gratitude to our

Prof. Christian Don Verth for his invaluable guidance
throughout the Text Mining course and project which was
instrumental in shaping the direction of this project.

XIV. REFERENCES

[1] Mohsinul Kabir a, Tasnim Ahmed a, Md. Bakhtiar Hasan a, Md
Tahmid Rahman Laskar b c, Tarun Kumar Joarder d, Hasan Mahmud
a and Kamrul Hasan, “DEPTWEET: A Typology for Social Media
Texts to Detect Depression Severities”.

[2] Ankit Murarka, Balaji Radhakrishnan and Sushma Ravichandran,
“Detection and Classification of mental illnesses on social media using
RoBERTa”.

[3] Jacob Devlin Ming-Wei Chang Kenton Lee and Kristina Toutanova
“BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”

[4] Lecture NoteBook 8 (Text Mining Lecture Notes)

XV. APPENDIX A
How to run the code

A. EDA and Pre-processing
1. Ensure that the data is placed in Data folder which is

in the same directory as the textPreprocessing.ipynb
file.

B. Traditional Models and Feature Importance
1. Open the notebook named, “Traditional models -

Mental Health Classification.ipynb”
2. Update the paths to the following preprocessed

files:
preprocessed_train.csv
preprocessed_val.csv
preprocessed_test.csv

3. Execute the cells in the notebook to see the output

C. LSTM
1. Open the folder DeepNN_MentalHealthClassification and
ensure that the data folder, containing the
preprocessed_train.csv, proceprocessed_val.csv and
preprocessed_test.csv files is inside
2. Run lstm_classifier.py

D. Bert
1. Open notebook named, “BERT - MentalyStable.ipynb”
2. Update paths of the following files:

a. bert_preprocessed_train.csv
b. bert_preprocessed_val.csv
c. bert_preprocessed_test.csv
d. deptweet_dataset.xlsx

3. Execute code in notebook to see output. You may need a gpu to
train the models otherwise it may be slow.

train_dir = os.path.join(os.getcwd(), 'Data/both_train.csv')

val_dir = os.path.join(os.getcwd(), 'Data/both_val.csv')

test_dir = os.path.join(os.getcwd(), 'Data/both_test.csv')

